Problem 19

Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}$.

Solution

Looking at the table of Taylor series on page 768, we see that this series looks very similar to the one for $\tan ^{-1} x$.

$$
\tan ^{-1} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

The objective here is to write the given series in this form. Start off by beginning the sum from $n=0$. Plugging in $n=0$ to the summand gives us 1 , so subtract it off.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}-1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{3}\right)^{n}}{2 n+1}-1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{\sqrt{3}}\right)^{2 n}}{2 n+1}-1 \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{\sqrt{3}}\right)^{2 n+1} \cdot \sqrt{3}}{2 n+1}-1 \\
& =\sqrt{3} \cdot \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{\sqrt{3}}\right)^{2 n+1}}{2 n+1}-1 \\
& =\sqrt{3} \cdot \tan ^{-1} \frac{1}{\sqrt{3}}-1 \\
& =\sqrt{3} \cdot \frac{\pi}{6}-1
\end{aligned}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}=\frac{\pi \sqrt{3}-6}{6}
$$

